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Abstract. The flow of a stratified fluid (e.g., oil/water) withdrawn from a vertically confined porous medium
through a point sink is considered. The withdrawal tends to cause the oil-water interface to move upwards. So
long as the interface is below the well, the less dense fluid (oil) is pumped into the well without the denser fluid
(water) until a critical flow rate is reached. The flow is considered to be axisymmetric, and involves a nonlinear
boundary condition along the free surface. A boundary-integral equation method (BIEM) is used to find the
interface position for different pumping rates. For small flow rates, a small-parameter expansion is derived and the
results are compared with numerical solutions to the problem. There exists a critical withdrawal rate beneath which
the water does not break through into the sink, this rate depending on the sink location and bottom geometry.
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1. Introduction

Most producing oil reservoirs consist of sandstone, limestone or dolomite formations. Within
an oil reservoir, fluids are separated into zones by density stratification. The denser fluid
occupies the lower position in the trap. As a result, water is often found in a layer below oil
[1, 2].

Oil can be pumped from a well situated in an oil layer above an oil-water interface. During
pumping, the interface will be drawn upwards to form a cusp as the flow rate is increased,
due to the potential distribution established in the two fluids. There exists a critical flow rate,
above which the water will enter the well, e.g. [3–7] and [8]. Therefore, at steady state, it is of
significance to calculate the shape of the coning and thus the critical flow rate for each well
position.

Two-dimensional steady sink-like flows near an interface between two immiscible fluids
in a porous medium have been studied by means of both the hodograph method and numerical
methods. Bear and Dagan [3] used the hodograph method and found a critical flow rate.
McCarthy [6] solved this problem by assuming a constant potential boundary across the
flow field at some distance from the sink in a lateral-edge-drive model. Recently, Zhang and
Hocking [8] employed a model assuming that the flowing layer is confined below by an
impermeable boundary, along which it is no longer necessary to satisfy a pressure condition.
By assuming the inner edge of this lower boundary to move outward, they observed that the
effect of this lower boundary can be gauged. This model could also be considered as a problem
in which a layer of oil is trapped between two impermeable rock strata exposed to a small
aquifer near the well site. A nonlinear integral-equation solution for this model was solved
numerically.
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Axisymmetric sink-like flow problems cannot be solved easily with conformal-mapping
methods and, in previous work, some approximations were used. Meyer and Garder [9]
assumed a critical situation when the cone reaches the bottom of the well and obtained a
theoretical flow maximum as a function of the depth of penetration of the well below the top
of the oil layer and the thickness of the oil zone at the drainage radius. Muskat and Wyckoff
[10] considered the problem of water coning towards a vertical well. It was based on the
assumption of horizontal radial flow and disregarded the presence of water coning. In other
studies [4, 5], a small perturbation method and a Boundary-Integral Method were applied, and
an approximate form for the well-suction pressure in an unconfined oil zone was assumed.
In Bruining et al.’s research [11], a sharp interface was assumed to exist between the oil and
the water, the oil region was assumed to be between the interface and the cap rock and the
water in the lower half space of infinite radial extent beneath the interface. The problem was
formulated as two singular integral equations and the breakthrough time was found to depend
on gravity number and mobility ratio. It was found that no steady critical flow exists. They
showed that for this configuration, with unbounded horizontal extent, a two-layer flow will
always occur eventually.

The study of withdrawal from water bodies with a free surface is closely related to this
problem. A number of papers have considered a series of two-dimensional free-surface flow
problems, having in common a submerged source or sink beneath a free surface, e.g. [12–15].
These studies have shown that steady flow having a cusped free surface which is horizontal at
infinity occurs at a unique Froude number in a fluid of infinite depth, or over a range of Froude
numbers for a fluid of finite depth. Some free-surface problems involving three-dimensional,
axisymmetric flow into a point sink for infinite and finite depths have been considered by
Forbes and Hocking [16, 17]. It was found that solutions with a stagnation point on the free
surface occur over an interval of Froude numbers.

Figure 1. (a) The physical plane of an oil reservoir. (b) Volume V and its real bounding surfaces and image
bounding surfaces used in the derivation of the integral equation.

In this paper, the flow of two incompressible, immiscible fluids through a porous medium
is considered. This problem is of practical importance as it is relevant to oil recovery. An oil
reservoir consisting of an oil layer confined above by an impermeable rock strata and below
by a water zone and the rock strata is investigated. The rock strata beneath some of the oil
layer removes the problem highlighted by Bruining et al. [11]. The presence of this boundary
makes a steady coning solution possible. The well is represented by a point sink. The physical
plane is shown in Figure 1(a).

The boundary-integral equation method (BIEM) is used to solve this problem of axisym-
metric flow governed by Laplace’s equation. A small-parameter-expansion (SPE) solution for
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small flow rate is also derived and the results are compared with those obtained from the
numerical computation.

2. Problem formulation

We consider a homogeneous and isotropic porous medium of constant permeability k beneath
a boundary of impermeable rock. A layer of oil depth H lies above an unbounded region of
water, as shown in Figure 1(a). A point sink is now located at a distance,hs, beneath the origin
of the Cartesian coordinate system. The inner edge of the lower impermeable boundary is
located at r = rl. The coning height is expressed by hc. The sink has strength Q=4�, so that
it produces a total flux Q per unit time.

Since the flow geometry is axisymmetric, we introduce cylindrical polar coordinates
(r; �; z). Non-dimensional variables are defined. The oil-layer depth, H , is used as the refer-
ence length. The variables can be nondimensionised as �� = �=H , where � is the velocity
potential and (r�; z�) = (r; z)=H. Q� = Q=KH2 is used as scaled withdrawal rate, where

K =
k

�

w � o


:

Here � is the viscosity of the oil and o and w are the specific gravity of oil and water,
respectively. For brevity, asterisks are dropped in the remainder of this paper.

The incompressible fluid satisfies Laplace’s equation [1]

r2� = �rr +
1
r
�r +�zz = 0 (2.1)

for the velocity potential �. The subscripts in (2.1) denote partial differentiation. The velocity
potential is singular at the point S (the point sink), where (r; z) ! (0;�hs), and it becomes
infinite according to

�! 1
4�[r2 + (z + hs)

2]1=2
; as (r; z)! (0;�hs):

At the unknown free surface location, z = �(r), there are two conditions to be satisfied.
The first of these is a kinematical condition, arising from the fact that no flow occurs normal
to the surface, and is expressed in the form

�z = �r�r; (2.2)

on z = �(r). The second condition is a combination of (2.2) and the application of Darcy’s
law on the interface, i.e. � = K(z + p=o), where p is the pressure at a point. The lower
fluid (water) is stationary, and the entire stationary fluid region is assumed to be at a constant
potential. Therefore, matching the pressure in the two fluid regions across each point on the
interface, we observe that the condition between a moving fluid (oil, o) and a stationary fluid
(water, w) in an isotropic medium is [1]

Q(�2
r +�2

z)� �z = 0: (2.3)

Within the flow domain, there is no flow across the solid boundaries and interface, a condition
which can be described by q � n = 0, where n is in the direction of the normal, and q is
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the specific discharge vector. Solutions are then dependent only on the single parameter of
nondimensional withdrawal flow rate Q, and the boundary conditions. However, Bruining
et al. [11] showed that a steady, vertically confined flow was not possible, if the region is of
infinite radial extent.

For completeness, we repeat this argument here. If r !1, conservation of volume dictates
that

Q � 2�r(� � 1)�r: (2.4)

The substitution of (2.2) and (2.4) in (2.3) gives

�
2
r �

2�r(� � 1)
Q2 �r + 1 = 0: (2.5)

When r!1; �r is small, and (2.5) can be rewritten as:

d�
dr

=
Q2

2�r(� � 1)
: (2.6)

By integration of (2.6), the interface position in the far field can be expressed as

�
2 � 2� =

Q2

�
log r + C; r !1; (2.7)

in which C is a constant. It is clear that � tends to infinity as r ! 1. This means that a
stationary flow with a stable interface cannot exist, but it can occur if either the oil-water
interface is held fixed at a finite distance r = rl, or the top impermeable boundary is moved
to infinity.

In this model, the point sink is present in a domain bounded above by a flat impermeable
boundary, and below by a water zone and an impermeable boundary (see Figure 1(a)). Above
the solid boundary an image point sink S1(r; z) = (0; hs) is assumed and the domain with its
boundary is replaced by a fictitious domain (see Figure 1(b)). The dashed lines in Figure 1(b)
are the image free surface, so that the zero-flux condition along the solid boundary is satisfied.
Therefore, the flow pattern sought and produced by the sink in the real domain is identical to
that obtained for the symmetric area when it is part of the fictitious domain.

Let the point F at the fluid interface be a fixed point with cylindrical polar coordinates
(r; �; �). Define another point E(�; �; �) which is free to move on the interface. We can now
derive an integral equation for the velocity potential � at the free surface in which SB denotes
the entire interface with a small circular disk about the point F excluded; SB1 is the fictitious
free surface, S� and S�1 are small spherical surfaces centred at the sink and the image sink,
respectively, and SF is a small hemispherical surface centred at the point F . These surfaces
are all displayed in Figure 1(b). If the distance between the points E and F is written as REF ,
then the function

1
REF

=
1

[r2 + �2 � 2r� cos(� � �) + (� � �)2]1=2
(2.8)

is harmonic within the volume V shown in Figure 1(b). Therefore, according to Green’s
theorem, we may write

Z Z
@V

"
�
@( 1

REF
)

@n
� 1
REF

@�

@n

#
dS = 0: (2.9)
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The closed boundary surface @V consists of

@V = SB + SB1 + S� + S�1 + SF : (2.10)

Calculation of the contribution of each surface to the integral leads to the desired integral
equation for � on the interface,

2��(F ) =
1

[r2 + (z + hs)
2]1=2

+
1

[r2 + (z � hs)
2]1=2

�
Z Z

SB

�(E)
@( 1

REF
)

@nE
dSE �

Z Z
SB1

�(E)
@( 1

REF
)

@nE
dSE: (2.11)

It is convenient at this stage to remove the singularity in the integrand of the third term of
the RHS of (2.11). We may do this in the usual way, by adding and subtracting a term which
has the same degree of singularity as that already present in the integrand. Thus, the third term
of the RHS of (2.11) is rewritten as

Z Z
SB

�(E)
@( 1

REF
)

@nE
dSE

=

Z Z
SB

[�(E)� �(F )]
@( 1

REF
)

@nE
dSE +�(F )

Z Z
SB

@( 1
REF

)

@nE
dSE: (2.12)

A Taylor expansion shows that the integrand of the first integral on the right-hand side of
(2.12) is now nonsingular, as intended. We may evaluate the second integral in closed form,
using a device based upon Gauss’s flux theorem. Since the function 1=REF defined in (2.8)
is harmonic within the volume V shown in Figure 1(b), we have

Z Z
SB

@( 1
REF

)

@nE
dSE = 0:

The numerical solution of this problem is associated with the surface point F and arclength
s along the surface, as described by Forbes and Hocking [16]. We assume that s = 0 at r = 0,
and define s according to

�
dr
ds

�2

+

�
d�
ds

�2

= 1: (2.13)

A surface velocity potential � is now defined as �(r(s)) = �(r; �(r)) and it follows that

d�
dr

= �r(r; �) + �z(r; �)
d�
dr
:

The kinematical condition (2.2) and Darcy’s law (2.3) are then combined to give a single
condition

Q
d�
ds
� d�

ds
= 0; (2.14)
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which is applied along the interface.
After some transformations, the integral equation (2.11) can be rewritten in terms of the

arclength as

2��(s) =
1

[r2 + (z + hs)
2]1=2

+
1

[r2 + (z � hs)
2]1=2

�
Z
1

0
[�(�) � �(s)]K(A;B;C;D) d�

�
Z
1

0
�(�)K(A1; B1; C1;D1) d� (2.15)

where the kernel can be written as

K(A;B;C;D) =
�4�

D
p
C +D

�
BK

�
2D

C +D

�
+
AD �BC

C �D
E

�
2D

C +D

��
;

according to the appendix of [16] and the auxiliary functions are defined as

A = r(�)� 0(�)� r
0(�)[�(�) � �(s)]; B = r(s)� 0(�)

C = r
2(�) + r

2(s) + [�(�)� �(s)]2;D = 2r(s)r(�):

K and E are the complete elliptic integrals of the first and second kinds, respectively. These
can be approximated by [18],

K(m) = (a0 + a1m1 + a2m
2
1 + a3m

3
1 + a4m

4
1)

+(b0 + b1m1 + b2m
2
1 + b3m

3
1 + b4m

4
1) log(1=m1) + "(m);

E(m) = (1 + c1m1 + c2m
2
1 + c3m

3
1 + c4m

4
1)

+(d1m1 + d2m
2
1 + d3m

3
1 + d4m

4
1) log(1=m1) + "(m);

j"(m)j 6 2� 10�8
; (2.16)

where "(m) indicates the upper bound of the error for this approximation, andm = 2D=(C+

D);m1 = 1�m. All the coefficients in (2.16) are available in [19]. The procedure to calculate
K(A1; B1; C1;D1) is similar to the above. Because the real free surface �(r) is symmetric
to the image interface ��(r), we have

A1 = �r(�)� 0(�) + r
0(�)[�(�) + �(s)]; B1 = �r(s)� 0(�)

C1 = r
2(�) + r

2(s) + [�(�) + �(s)]2;D1 = 2r(s)r(�):

Therefore, the equations (2.13), (2.14) and (2.15) represent a complete statement of the
problem to be solved.

3. Small-parameter expansion

We can obtain an asymptotic approximation by assuming a regular expansion in powers of
the parameter Q,

�(r; z) = �0(r; z) +O(Q) (3.1)
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Figure 2. The shapes of the free surface calculated with the BIEM compared with the solutions obtained by the
SPE.

�(r) = �1 +QZ1(r) +O(Q
2
): (3.2)

Using the method of images, we arrive at a solution for �0 in the form

�0(r; z) =
1

4�

1X
n=0

1
[r2 + (z � hs + 2n)2]1=2

+
1

[r2 + (z + hs � 2n)2]1=2
: (3.3)

The first-order approximation satisfies the kinematic condition (2.2) and the dynamic free
surface condition (2.3) if

�0r = �Z 01(r); (3.4)

at z = �1. Differentiating (3.3), we have

�0r = � r

4�

1X
n=0

1
[r2 + (z � hs + 2n)2]3=2

+
1

[r2 + (z + hs � 2n)2]3=2
: (3.5)

and then equations (3.4) and (3.5) can be used to obtain Z 01(r) numerically. Use of the
boundary conditions, when r = rl; z = �1, and substitution in (3.2) leads to the first-order
approximation for �(r), the shape of the interface.
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Figure 3. The shapes of the free surface calculated with the BIEM with the sink on the upper boundary hs = 0�0.
(a) Domed shape with the parameter Q = 0�30. (b) Cusped shape with the critical parameter Qc = 0�58.

Figure 4. The interface in critical cases with the sink
at different positions.

Figure 5. The relationship between the critical flow
rate the position of the sink for rl = 8�0.
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4. Numerical solution technique

The numerical method for the solution of the governing equations derived in Section 2 is
described briefly in this section. The integral terms in Equation (2.15) may be integrated by
numerical integration along the real interface. They can be evaluated by Gaussian quadrature.
Two different situations are considered separately.

When the base point F does not coincide with either Ej or Ej+1 (j = 0; 1; : : : ; N), the
elliptic integrals have regular behavior. The integral can be expressed over a linear segment
as follows:Z

1

0
[�(�)� �(s)]K(A;B;C;D) d� =

NX
j=0

Z �j+1

�j

[�(�) � �(s)]K(A;B;C;D) d�; (4.1)

whereZ �j+1

�j

[�(�) � �(s)]K(A;B;C;D) d�

� 1
2
(�j+1 � �)

MX
i=1

!i[�(�i)� �(s)]K[A(�i); B(�i); C(�i);D(�i)]: (4.2)

For the linear interpolation of � between a pair of consecutive points Ej and Ej+1 along the
interface, we use

�(�i) = [(�(�j+1)� �(�j))�i + �j+1�(�j)� �j�(�j+1)]=(�j+1 � �j)

with

�i = [(�j+1 � �j)�i + �j+1 + �j ]=2;

where the Gaussian quadrature weights !i and the positions �i are available in Abramowitz
and Stegun [18] for different values of the order M . In this study, we consider M = 8 which
gives six-figure accuracy.

When the singular point F is located at either point Ej or Ej+1, the integrals have an
integrable singularity as � ! �j (or �j+1), due to the fact that K(m) has a logarithmic
singularity as m ! 1. Thus, regular Gaussian quadrature does not give accurate results. To
overcome this problem, we rearrange the approximation for K(m) as follows:

K(m) = K
�

(m)� b0 log m1 (4.3)

with

K
�(m) = a0 +

4X
l=1

[alm
l
1 + blm

l
1 log(1=m1)] (4.4)

where K�(m) is a regular function along the segment �j 6 � 6 �j+1. The other term of
function (4.3) has a logarithmic singularity, but it can be evaluated by means of a special
Gaussian quadrature, i.e.,

Z 1

0
f(x) logx dx =

MX
i=1

!
s
i f(�

s
i ); (4.5)
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where !si and �si are the special Gaussian-quadrature weights and locations as given by
Abramowitz and Stegun [18].

The procedure to calculate the other integral term in (2.15) is similar. Because the point F
moves within the surface SB , there are no singularities.

In this problem, the relevant integral equations require only discretization of points along
the interface as opposed to other numerical methods where the whole domain must be dis-
cretized. For the nonlinear integral equations (2.13), (2.14) and (2.15) the domain [0;1)

of the independent variable s is split into two parts: 0 6 s 6 sN (s0 = 0; s1; : : : ; sN ) and
sN 6 s 61. In this problem, the solution domain extends to infinity, the calculation should
be extended far enough so that the artificial boundaries introduced by the method do not
seriously affect the solution.

In summary, the numerical procedure is as follows. An initial guess is made for the
unknown values of the derivatives of the velocity potential (�00; �

0

1; : : : ; �
0

N ) and these will
eventually be updated by a Newtonian iteration scheme. All the other dependent variables are
computed on the basis of this guess. The surface condition (2.14) yields the derivatives of the
surface elevation � 00; �

0

1; : : : ; �
0

N , and (2.13) provides an immediate means for the calculation of
s0; s1; : : : ; sN . We obtain the values of (�0; �1; : : : ; �N ); (�0; �1; : : : ; �N ) and (s0; s1; : : : ; sN )

by integrating the values for �0; � 0 and r0 using Gaussian quadrature, respectively. Notice that
for the first point s0 = 0; r0 = 0 and �N = �1 are applied to obtain the interface position.

The initial estimate for the values of the derivative of the velocity potential� is now updated
iteratively with Newton’s method to enforce the conditions (2.15) at each of the mesh points.

Figure 6. The free surfaces in critical cases with the
same sink positions hs = 0�0 and different bottom
boundary locations.

Figure 7. The relationship between the critical flow
rate and the position of the bottom boundary.

5. Discussion of the results

The solutions of this problem depend on the parameterQ, the sink position hs and the bottom
boundary location rl. When the flow rate Q is quite small, we calculate the solution, using a
small-parameter expansion and using a BIEM. Figure 2 shows that the two solutions are in
good agreement, having a stagnation point directly under the sink.

As the flow rate Q increases, the interface is drawn up from a domed shape until the
critical rate Qc is reached when a cusp shape forms. We have found the critical value of Qc
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by increasing Q to find at what maximum value a converged cone shape is possible. Figure
3 shows the shape of the interface for two flow rates, where the sink is on the top boundary
hs = 0�0 and the bottom boundary rl = 8�0.

The behavior of the critical flow is the most important aspect of this work, because that
is when the water breaks through into the sink. This has a profound effect on the quality and
quantity of oil production. When the flow rate Q > Qc, the numerical model diverges, and a
stable solution is not obtained.

The location of the sink plays an important role in the shape of the interface. When the
bottom boundary is fixed, and the vertical height hs between the well and the top boundary
increases, the critical values of the parameter Qc decrease and the coning height declines as
well. Figure 4 shows the interface profiles in these critical case. In Figure 5, the relationship
between sink position and critical rate is shown. When the sink is located at the top boundary
Qc is maximal, and when the sink is moved close to the bottom boundary,Qc tends to zero.

The bottom boundary also affects the critical flow rate. If the sink position is fixed and the
bottom boundary is moved outwards horizontally, the coning height hc increases, as shown in
Figure 6, but the value of Qc will decrease as shown in Figure 7. It is clear that Qc ! 0 as
rl !1, and Qc !1 as rl ! 0. This work confirms the conclusions of Bruining et al. [11],
who showed that if the domain is unbounded horizontally, supercritical, two-layer flow will
always eventuate. It does add to this in that it shows that a critical steady solution is possible
if the lower fluid is of limited horizontal extent.

The results of this study of the axisymmetric flow into a point sink from an oil zone of
finite depth has much in common with two-dimensional flow into a line sink, as reported in
[8] and [20]. In both cases, a stationary situation with an equilibrium cone below the sink
which satisfies hc < hs and rl(xl)!1 cannot exist, while Qc !1 as rl ! 0. In order to
obtain high efficiency of pumping, Zhang, Barry and Hocking [21] examined a supercritical
flow rate, pulsed pumping strategy. They found that the efficiency of the withdrawal can be
improved if the pumping and rebound cycles are suitably chosen.

6. Conclusion

The shape of an oil-water interface caused by flow into a point sink in an oil reservoir which is
confined above by an impermeable rock strata and below by a water zone and a rock strata, has
been investigated by the BIEM. It was found that there is an upper limit to the flow rate, above
which the water will also enter the sink. At the critical flow rate the interface has a vertical
cusp shape. The locations of the well and the bottom rock strata influence the shaping of the
interface. These solutions provide us with useful information for choosing optimal withdrawal
rates in a variety of circumstances.
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